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1 Introduction

The cleaning of aerospace systems and components is essential for the safe, efficient,

and reliable operation of advanced aircraft and space transport vehicles. Strict cleanliness

requirements are especially important for liquid oxygen (LO_) systems which are routinely

serviced at NASA Kennedy Space Center (KSC). Historically, the aerospace industry has

heavily relied upon trichlorotrifluoroethane (Rl13) and other chlorofluorocarbon (CFC) fluids

to remove organic and nonorganic residues due to their excellent solvency potential. KSC

processes approximately 250,000 pieces through the component cleaning facility per year

(Littlefield et al., 1994). Of these, approximately 1000 pieces are classified as large

components and the remaining pieces are classified as small components. During 1993

60,000 pounds of R113 were consumed for cleaning and verification purposes. However,

due to the suggested destruction of the upper ozone layer from the release of CFC

compounds, they have been phased out of production since lanuary, 1996. Currently,

ultrasonic water baths are successfully utilized to clean small parts (Melton et al., 1993).

However, there remains uncertainty as to the most effective means of cleaning large

components which consist of valves, regulators, pipes, k-bottles, flexible hose lines, and

others.

Apart from the cleaning difficulties encountered at NASA KSC, the entire aerospace

industry faces similar challenges. For example, due to the high temperatures encountered in

military jet afterburners, perfluorinated polyether (I:q'FE) greases are used for lubrication

purposes, but they are chemically inert and very difficult to remove during inspection and

repair. After studying a variety of cleaning options, Thorn (1995) found that
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hydrofluorocarbon(HFC) solventsin conjunctionwith ultrasonicbathsyielded the best

performance. The cleaningof compressorbladesin advancedaircraft engineshasalso been

a concern. Kolkman (1993)hastestedfour new commerciallyavailablecleanserswhich are
o-

reported to be "ecologically sound." Of the new cleansers tested, all were found to have

poor performance compared with those that have previously been used in practice. Hills

(1995) has studied the performance of CO2 jet sprays in removing organic compounds from

solid surfaces. During the operation of this cleaning facility, CO2 is expanded through an

orifice so that a gas/solid mixture is formed. The mixture then flows through a nozzle which

controls the solid particle size. It was found that the jet spray was effective in cleaning

certain organic compounds and not others. The contaminants which had the greatest

solubility in liquid CO2 were most effectively removed. It was thus hypothesized that

cleaning occurs due to both abrasion and solvency.

Due to the growing demand for non-ozone depleting solvents, 3M Engineering has

been developing hydrofluoroethers as replacements. The solvent HFE-A (C4FgOCH3) is

reported (Morkid, 1995) to have zero ozone depletion potential with very similar properties

to Rl13. However, such solvents are expensive compared to the price of CFC's before they

were phased out of production.

Currently the surface cleanliness requirement is that there can be no more than 11.1

mg/m 2 of NVR. In order to address the problem of cleaning large aerospace systems and

components, the NASA KSC Material Science Laboratory has developed a high velocity

breathing air/water jet impingement system which has been demonstrated to be useful in the

cleaning and verification of the nonvolatile residue (NVR) requirement (Dearing et al.,



1993). A description of the experimental facility and design procedure are given by Caimi

and Thaxton (1993). The jet impingement facility developed at NASA KSC has the

advantage over conventional high speed water jets in that the amount of water consumed is

extremely low, typically 30-40 ml/min. Thus, the disposal of the waste water is greatly

simplified.

Although the jet impingement facility has been successful in removing nonvolatile

residues, the primary mechanism responsible for residue removal is not well understood.

When the air stream is maintained at low temperatures, it has been observed that liquid

droplets discharging from the nozzle solidify and ice crystals impact the cleaning surface.

Under such an operating condition it is possible for residue to be removed due to abrasion of

the crystals or through liquid emulsification of the residue upon impact. When the droplets

remain in a liquid state it is hypothesized that the cleaning mechanism is due to

emulsification.

The primary objective of the research described in this report is to fabricate an

experimental high speed jet impingement facility and characterize its effectiveness in

removing nonvolatile residues over a range 0f operating conditions with different nozzle

configurations. It is desired to determine the optimum operating condition. It is anticipated

that these tests will also provide some fundamental insight into the most effective residue

removal mechanism.



2 Physical Considerations of High Velocity Jet Impingement Systems

2.1 Flow Structure

A typical high speed jet impingement cleaning system is shown schematically in

Figure 1. A high pressure air stream containing suspended liquid droplets expands through a

converging-diverging nozzle. The mixture exiting the nozzle impacts the cleaning surface at

some appropriate approach angle. The high velocity droplets or ice crystals impact the

surface and the kinetic energy is used to remove the surface residue.

The structure of a supersonic jet impinging on an inclined fiat plate is extremely

complicated even without the presence of the droplets. Since the motions of the droplets will

be dictated by the carder gas flow, it is important to understand the complex flow structures

involved. After exiting the nozzle, the flow is typically characterized by many

discontinuities, such as barrel shock, exhaust gas jet boundary, Mach disk, reflected shock,

plate shock, subtail shock, contact surface, and sometimes a stagnation circulation region.

The jet structure is three dimensional and severely distorted near the inclined impingement

plate (Lamont and Hunt, 1980; Tsuboi et al., 1991; and Kim and Chang, 1994) as sketched

in Figures 2a and 2b. In particular, the maximum wall pressure was found to be several

times larger on the inclined plate than the normal plate, which is not intuitively obvious. It

is highly unlikely that the flow field between the nozzle and the plate can be described

reliably in an analytical manner.

Depending on the inlet temperature of the mixture to the nozzle, it is possible for the

gas phase to fall below the freezing temperature of the liquid (Tt=273°K for water at one

atmosphere) upon expansion through the nozzle. Due to heat transfer, it is possible for a
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Figure 2a Schematic Diagram of an Under-Expanded Supersonic

Jet Normally Impinging a Flat Plate (O=0).
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Figure 2b Shock Structure of an Under-Expanded Supersonic

Jet Impinging an Inclined Flat Plate (0 > 0).
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droplet to fall below Tf during its motion toward the impingement plate. The thermal

relaxation time may be roughly estimated as r-6k/(a2pp%) where k is the thermal

conductivity of the gas, a is the droplet radius, pp is the droplet density, and cp is the droplet

.p

heat capacity. This relaxation time is the time required for the droplet to achieve thermal

equilibrium with the gas. It is seen that the relaxation time strongly depends on the droplet

radius. Thus, smaller droplets have a greater potential to solidify. The solidification process

will subsequently follow after the freezing temperature, Tf, is reached during the droplet

motion. Typically, the one-dimensional solidification front moves as s-Vtc_,t in which a, is

the solid thermal diffusivity. Due to the extremely high speed at which droplets translate and

the relatively short distance they travel prior to striking the plate, the droplets may only

partially solidify at the time of surface impact. Thus, the liquid contained within the

solidified portion of the droplet can emulsify the surface residue. During operating

conditions in which droplets solidify, the degree of solidification may be important in the

removal of surface residues.

2.2 An Analogy with Particle Impact Erosibn

Although the problem of liquid droplet impingement is different from particle impact

erosion which occurs in pneumatic transport systems, the mechanism controlling particle

impact erosion can provide some insight into the nonvolatile residue removal mechanism.

Most pneumatic transport systems are constructed from ductile metals, and many

experimental results have indicated that the erosion rate (i.e. the rate at which mass or

volume of the target material is removed) is highest when the particle impact angle, 0 (with



respect to the impingement wall) is around 15 to 20 degrees. Finnie (1972) listed factors

which may influence the ductile erosion due to particles colliding with the target metal

surface: impact angle, rotation of particles, particle velocity at impact, particle size, surface

properties, shape of the surface, stress distribution in the surface, panicle shape and strength,

particle concentration in the fluid stream, and the nature of the carder gas. By treating an

impacting particle as an idealized rigid abrasive particle cutting the target surface, a relation

for the eroded volume, V, was derived (Finnie, 1972). The eroded volume was found to be

proportional to U 2 in which U is the particle velocity upon impact. Interestingly, the

maximum erosion rate occurs when the particle impacts the wall at 0- 15 °.

Hoff et al. (1966) studied the erosion of solid surfaces due to liquid droplet impact.

It was found that the droplet velocity, impact angle, droplet size, and temperature were all

important factors in liquid droplet erosion. It was concluded that only the velocity

component normal to the surface contributed to droplet erosion. However, in this case the

impact droplet is soft while the target material is hard.

2.3 Theoretical Framework for Residue Removal

In cleaning applications, when the stream of impacting droplets remain in a liquid

state, the kinetic energy of the droplets are transmitted to the residue to break cohesive and

adhesive bonds, resulting in emulsification of the surface residue with the liquid. When the

droplets have solidified, the particles will be abrasive and the cutting action of the high speed

abrasive ice crystals must break the cohesive and adhesive bonds of the residue.

In carrying through the analogy of jet impingement residue removal with particle or
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droplet impacterosion,an energybalancemaybe usedto gain somequalitativeinsight into

parametersinfluencing theresidueremovalprocess. The rateof liquid droplet kinetic energy

dischargingfrom thenozzlemaybe expressedas,

(1)

where rhe is the liquid mass flow rate through the nozzle and U is the droplet discharge

velocity from the nozzle. Only a fraction of the kinetic energy of the droplets leaving the

nozzle will contribute to the residue removal upon striking the surface. This fraction will be

referred to as the energy utilization parameter and will be designated by _b. It is anticipated

that 4, will strongly depend on many different parameters, some of which include the jet

approach angle with respect to the cleaning surface, the detailed structure of shock waves the

droplets must pass through prior to impacting the cleaning surface, the size of the droplets,

the concentration of droplets impacting the surface, and viscosity of the liquid.

The amount of energy required to emulsify a given amount of residue with surface

area At, is _"

2oe, A" (2)

where 0_e_is the interfacial tension between the liquid and residue• For simplicity sake it is

assumed that only residue-residue intermolecular forces must be overcome to remove the

residue. This implies that only cohesional forces are important. It is recognized that

adhesion forces due to residue-solid contact must be overcome to completely remove all of

10



theresiduefrom the cleaningsurface. However, the monolayerof residuein contactwith

the surfaceis typically a small fractionof the total residuewhich mustbe removed.

Assuming the emulsified residue takes the form of microspheres in the liquid with radius a_,

an energy balance between the rate of kinetic energy available for emulsification and the rate

of energy required to emulsify a given amount of material per unit time gives,

• U2 " &re' (3)
m e---_-dp =rn , a ,p ,

where rh is the mass rate of removal of residue from the cleaning surface and pf is the

material density of the residue. Thus it is readily seen that,

rhtU 2

O'er

(4)

A couple of observations from Eq. (4) are worth noting. First, it is seen that the

removal of residue depends strongly on the mass flow rate of liquid impinging the surface

and the droplet velocity. However, increasing the mass flow rate alone will not necessarily

increase the rate of residue removal. The reason is that as the gas/liquid mixture enters the

nozzle, the shearing action through the nozzle significantly atomizes the liquid into fine

droplets. The smaller the droplet sizes, it is more likely that the droplets will follow the

carrier fluid and achieve a high nozzle exit velocity. However, if the mass flow rate of

liquid through the nozzle is too great, the liquid will agglomerate into larger droplets and

11



will be lesslikely to follow the carrier fluid which will result in lower impact velocities.

Second, it is seen that the rate of residue removal is inversely proportional to the

interfacial tension between the liquid and residue. Since interfacial tension is typically

..

inversely proportional to temperature, Eq. (4) predicts that the rate of residue removal due to

emulsification will be enhanced with increasing temperature. Low temperature operation of

the system may appear to be attractive since the ice formation can enhance the abrasive

residue removal. However, the cohesional strength of the residue is increased at low

temperatures and could offset any gains realized from abrasive impact. These considerations

must be tested experimentally. As has already been mentioned, the energy utilization

parameter, 4, depends on many different variables in the operating system, and can only be

determined experimentally.

3 Experimental Apparatus and Instrumentation

3.1 Description of High Speed Jet Impingement Facility

An experimental high speed jet impingement facility was fabricated in order to

characterize the effectiveness in removing nohvolatile residues over a range of operating

conditions. A schematic diagram of the facility is depicted in Figure 3 with an attached

parts list. The facility was designed to operate in the batch mode because is was desired to

bring the air temperature expanding through the nozzle to a sufficiently low temperature so

that ice formation of the liquid droplets could be achieved and its effectiveness could be

examined. This required that the stagnation pressure driving the flow be close to 2000 psig

prior to pressure regulation. Therefore, a high pressure Baur U-E3 air compressor has been

12



Figure 3 Detailed SchematicDiagram of High Speed J'et Impingement Facility.
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Parts List for Figure 3.

I Compressor:

2 Air/Water line:

3 Air Tanks:

4 Valves:

5 Regulator:
6 Heaters:

7 Insulation, Heater:
8 Valves:

9 Pressure Transducer:

10 Thermocouples:
11 Differential Pressure:

12 Air Velocity:
13 Water Tank:

14 Water Heating Element:
15 Valves:

16 Thermocouples:

17 Mixing Chamber

18 Thermocouples:

19 Thermocouples:
20 Nozzle:

21 Power Regulator (Heaters):

Scale:

Laser:

Laser Power Supply:
Power Meter:

Eye:

Computer:

Parts List

Bauer, Utilus, 3Hp, 5000 psig @ 3.4 SCFM, "

Model B0032DLF2AM02, SN 95X06217

Supreme SMLS 3/8" Stainless and 1/4" Brass insulated with Fiber glass

pipe insulation

Superior, Ten 40 liter, 2500 psig

Whitey, SS-63TF8, ½", 2500 psig

Tescom 500, 3000/600 psig
Two 3000W Coil Heaters

Calcium Silicate, 1½" thick, 1 3/8" ID

Whitey, SS-63TF8, ½", 2500 psig

Viatran, 0 - 500 psig, Model 3415AU2AAA20, SN 13291699

J-Type

Validyne, Model DP215-40, SN 23872
Annubar

Stainless Steel, One Gallon

240W, 220V

Whitey, SS-63TF8, ½", 2500 psig

J-Type

Stainless Steel, 0.0045" water inlet hole

l-Type

J-Type

Conventional or Annular converging/diverging nozzle
IMS, Model 2, SN 1498, 240V, 20A

Not Shown:

Ohaus Analytical Standard, AS200, +1'-. img, SN # 2745, UF 4910-AA-
133267

Omnichrome, Model 532, SN # 4080, Max output 11 mW

Omnichrome, Model 150, l l0V

Newport Power Meter, Model 1818-C, 20mW setting, UF 4910-AA-
125750

Newport, Model 818-SL, SN 4590, Washer with ½" ID to restrict light

input

Northgate Computer Systems, 286, UF 4910-AA-107694

14



instaUed to charge ten 40 liter k-bottles which have been installed in parallel. The

specifications of the compressor are as follows: 3.5 cfm delivery rate, 5000 psig maximum

pressure, with 3 intercooled stages driven by a 3 HP motor at 3460 rpm. The compressor

charges the ten 40 1 k-bottles to 2000 psig in approximately two and'a half hours. Although

the k-bottles are rated to 2500 psig, a relief valve has been installed and set at 2000 psig. A

pressure regulator is placed at the discharge of the k-bottles. Typically, the regulator is set

to 320 psig to achieve the desired air flow rate.

Downstream of the pressure regulators is a 6 kW air heater section. Two 3 kW band

heaters firmly fit around the outside of a 7/8" O.D. copper tube. The band heaters are

insulated with 11/2" calcium silicate insulation. Thermocouples are installed at the inlet and

discharge of the heater section. All thermocouples used in the test facility are type J. The

power to the band heaters are controlled with a pulsed output 240 VAC PID temperature

controller. When full power is required, a thermocouple attached to the copper heating

section is used for feedback to the temperature controller so that the copper heater section

does not melt.

The air exiting the air heater section passes through an Annubar type flow meter.

Downstream of the flow meter is the air/water mixing chamber. In addition to mixing the

air and water, the mixing chamber provides precise metering of the water flow. The design

of the mixing chamber is shown in Figures 4a-d. Two different sized orifices are inserted

into the mixing chamber. The 3/8" orifice adapter is inserted into the air side of the

chamber and is used to accelerate the air flow through the chamber. The pressure in the

chamber drops as the air is accelerated which allows the pressurized water to flow into the

ID
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Figures4a-d Detailed Drawingsof Mixing Chamberand Orifice Adapters.
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chamber. The water flow rate is metered with the 1/4" orifice adapter. The orifice

diameter for the air side is 0.195 inches and the orifice diameter for the water side ranges

from 0.013-0.020 inches, depending on the desired water flow rate.

The water side of the jet impingement cleaning facility primarily consists of a high

pressure stainless steel cylinder which sits inside a water bath. The cylinder is rated for

5000 psig and has a capacity of 1 gallon. Distilled water is placed inside the cylinder, and it

is pressurized with air downstream of the heater section. It is very important that liquids

with no contaminants are placed inside the water cylinder because even the smallest

contaminants can plug the water side orifice. The water cylinder is mounted inside a water

bath which is open to the atmosphere. The water bath can be heated or cooled in order to

control the water temperature inside the cylinder.

The high pressure two-phase mixture exiting the mixing chamber is connected to a

high pressure stainless steel hose. A converging-diverging nozzle is fitted at the end of the

hose. The exit area to throat area ratio of the nozzles considered in this study is 5.44 which

corresponds to a design discharge Mach number of 3.14. Two different nozzle designs were

considered in this study, both of which were'designed and manufactured at NASA KSC. A

conventional converging-diverging nozzle is shown in Figure 5a and an annular type

converging-diverging nozzle is shown in Figure 5b. Due to two-dimensional flow behavior

in the nozzle the two-phase jet discharging the conventional nozzle diverges thus creating a

wider jet with smaller concentration of liquid droplets at the cleaning surface. The two-

phase jet in the annular nozzle converges at the exit. Thus the jet diameter is narrower and

the concentration of droplets at the target surface is higher. Although the conventional

18



Figure 5a ConventionalConverging-DivergingNozzle.
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nozzlecancovera greatersurfaceareathan the annularnozzle,it remainsfor experimental

verification which nozzlecan removethe greatestamountof nonvolatileresidue.

3.2 Description of Instrumentation

Type I thermocouples are placed at various locations throughout the jet impingement

facility to measure temperature. The most important temperature measurements required to

interpret the experimental results are the air temperature exiting the heater section, the air

temperature entering the annubar flow meter, the water temperature entering the mixing

chamber, and the mixture temperature discharging the mixing chamber. During later

experiments is was observed that when the two-phase mixture was heated, the mixture

temperature entering the nozzle was significantly less than that discharging the mixing

chamber due to heat transfer losses from the stainless steel high pressure hose. In

subsequent tests, the hose was insulated, and a thermocouple was inserted just prior to the

entrance of the nozzle to measure the mixture temperature.

The static pressure of the air at the discharge of the heater section and just before the

annubar flow meter is measured with a Viatran 3400 series strain gage type transducer with a

pressure range of 0-500 psig and a proportional current output. The air pressure discharging

the k-bottles is regulated with a Tescom 500 3000/600 psig pressure regulator.

The air flow rate is measured with a 1/2" annubar flow meter manufactured by

Dietrich Standard. The pressure drop across the annubar is measured with a Validyne

DP215 magnetic reluctance differential pressure transducer. The Validyne transducer signal

is conditioned with a CD15 carder demodulator and has been calibrated for a range of-5 to

20



5 psid which corresponds to a linear output ranging from -10 to 10 Vdc. The water flow

rate is measured using the catch and weigh method. An Ohaus AS200 precision balance is

used to measure the water sample.

A laser reflectivity method has been developed for measuring the quantity of residue

on the cleaning surface; see next section for details. Figure 6 shows a schematic diagram of

the measuring technique. A 100 mW argon-ion laser is used to illuminate the cleaning

surface. Typically, the laser is set at its minimum output, 11 mW. A Newport 818-SL

power meter is used to measure the spectral directional reflectivity. The spectral directional

reflectivity is a function of the quantity of residue on the cleaning surface.

The output from all instrumentation is measured with an Access 12 bit analog to

digital converter which is mounted inside a PC style microcomputer. A 16 channel

multiplexer with programmable gain is interfaced with the analog to digital converter.

Various algorithms used to control the data collection and analysis were programmed in

Quick Basic.

3.3 Reflectivity Cafibration and Residue Measurement Protocol

The following describes the procedure of the reflectivity method for measuring and

calibrating the quantity of contaminant on the cleaning surface as a function of the

reflectivity. The cleaning surface used for all tests consists of a polished 30 x 30 cm

stainless steel plate. The laser, power meter, and cleaning surface are to be aligned as

shown in Figure 6.

A) Turn on laser, scale, power meter, and computer. Allow 20 minutes for the laser

21
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to reach steady-state power output prior to any testing.

B) Remove all objects from the bench on which the scale rests, and do not lean on the

bench. Use dial pegs located at the front of the balance in order to level it. The level

indicator is located at the back of the balance.

C) Place the spatula on the balance and wait for the reading to stabilize.

1. Prior to attempting a reading, turn off the air conditioning, compressor, and any

other vibrating or blowing equipment. The air disturbance or vibrations could adversely

influence the measurements.

2. Do not lean on the table or create air currents by walking or breathing in the

vicinity of the measurement area.

3. When placing items on the balance, do so as consistently as possible. Rotating the

tray can cause fluctuations in the mass measurements.

D) Tare the balance.

E) Squeeze a small amount of grease out of the tube onto a paper towel to ensure

consistency of the grease sample.

F) Apply a grease sample to the spatula.

G) Record the mass of grease.

H) Lightly dab grease on the cleaning surface. Try to dab grease evenly over the

entire surface. Use a coarse grid pattern, filling in vacant areas. Dab until grease no longer

comes off the spatula. Try to remove grease from the heavier dabs and spread to the lighter

coated areas.

I) Now spread the grease evenly over the entire surface using a small circular motion.
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Use a heated blow dryer for ease of spreading. Do not apply heat directly to the spatula.

This procedure will insure that the grease is uniformly spread over the cleaning surface.

J) Place the spatula back on the balance, close the balance doors and allow to cool.

Do not record the balance reading yet.

K) Heat affects the reflective properties of the grease. Therefore, use pressurized air

(200-400 psig) to cool the back of the plate to approximately 30°C. This may require up to

5 minutes, depending on the extent to which the plate was heated. At this stage, cleaning or

calibration takes place. If the plate is to be cleaned, place the cleaning surface on its stand

and follow the cleaning procedure outlined in Section 3.4. Once the surface is cleaned

continue to step L. If calibrating, continue directly to step L without going through the

cleaning process.

L) Run the computer program nlaser.exe_ and follow prompts, entering all

information requested.

1. When asked to calibrate the meter for initial power readings, turn the Newport

power meter down to its finest setting and zero the meter to ambient light conditions. Return

the meter to the 20 mW setting. Place the hght receiver over the laser outlet and hit the

enter button.

2. When cued to return the eye, move the light receiver stand to the position outlined

on the bench. Insure that the entire beam enters the eye. A small percentage of light will

reflect back out of the eye. By directing this light directly back at the spot which the laser

plate is striking ensures that the laser beam is striking normally to the receiver surface.

3. "Laser" will give a prompt to "Hit 2 to finish sampling, n
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4. The plate is movedby turning eithera horizontalfor vertical positioningdial. By

hitting "Enter" eachtime thehorizontalpositioningdial is turned, samplesof the power

meteroutputarecollected. This is repeatedfor 52 horizontalpositions. The vertical

positioningdial is thenturnedeleventimes,andanotherstring of horizontaldatais collected.

The processcontinuesuntil six rows havebeencollected. Each time "Enter" is depressed,

power metersamplesarecollectedat 10Hz andthe averagepower readingis displayed.

After thesedatahavebeencollected,"2" is depressedon the computer.

5. The computerprogramwill give a prompt to test theoutputpower of the laser

again, andwill thencollect information regardingthe test.

6. A final output screenwill consolidateall the important informationand ask

whetheror not thedatashouldbe savedto a file. If yes, the datais storedto a file named

by the currentdateand time (i.e. 5131641.datis May 13, 4:41 pm).

7. A hardcopy of the datacanbeobtainedusingthe "print screen"key.

M) Oncethe testsarecompleted,methyl alcoholis appliedto apaper towel, which is

usedto removethegreasefrom the testsurface.

All of the cleaningtestscardedout in this investigationusedDow Coming 55 (DC-

55) O-Ring Lubricant asthe surfaceresidue. Figure 7 showsa calibrationcurve for the DC-

55 residuecontaminantlevel asa functionof the laserreflectivity at 60° incidentangle.

3.4 Protocol for Operating High Speed Jet Impingement Facility

The following explains the detailed protocol for experimental cleaning investigations using

the high speed jet impingement facility.
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Figure 7 CalibrationCurve for ResidueContaminationUsingLaser Reflectivity.
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A) Close all system valves.

B) Open all valves on air storage tanks.

C) Turn on the compressor only if tanks require charging.

D) Turn on the water bath heater and allow the water to reach the desired temperature

only for experiments in which water heating is required.

E) Turn on the IMS power regulator and warm the air heating elements to 540°F only

for experiments in which air heating is required.

F) Turn on the computer, Viatran pressure transducer power supply, Validyne

differential pressure transducer carder demodulator, Newport power meter, and the Ohaus

electronic balance.

G) Once the plate is prepared for cleaning (as per instructions in Section 3.3), transfer

the stainless steel cleaning surface to the test stand.

H) Select nozzle wand intended for cleaning. Using a ruler and protractor, attach a

reference ruler to the nozzle. This ruler allows the operator to maintain a specified distance

from the cleaning surface and control the approach angle of the jet with respect to the

cleaning surface.

I) Run the computer program "csn.exe." The program will cue the operator to zero

the Validyne transducer (insure that there is no fluid flow at the time of zeroing). The

program provides a means of real time monitoring of system instrumentation.

J) Open the valves just prior to the pressure regulator and downstream of the heater

section.
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K) Adjust the pressureregulatorto approximately50 psig and allow air to discharge

from the system for three minutes. This allows the system to achieve a steady-state

temperature.

L) Adjust pressure regulator for 320 psig output, and open the water valve just prior

to the mixing chamber. The nozzle operator (NzOp) is cued by the system operator (SyOp)

to begin cleaning. The SyOp monitors a predetermined cleaning time and records system

information via "csn.exe". The NzOp cleans the test surface using up and down motions,

starting at one side and blowing the grease away from the initial location.

M) After the NzOp is cued by the SyOp to stop cleaning, the water valve is closed.

N) Adjust the pressure regulator to 0 psig output.

O) Dry test surface using pressurized air (100 psig).

P) Place test plate on the laser calibration and verification stand and follow the

procedures outlined in Section 3.3 to measure the surface residue remaining on the plate

following cleaning. If no further testing is desired, follow the steps below to shut down the

system.

Q) Close all system valves. "

R) Close all valves on air storage tanks.

S) Turn off the compressor once tanks are charged to desired level.

T) Turn off the water bath heater.

U) Turn off the IMS power regulator.

V) Turn off the computer, Viatran pressure transducer power supply, Validyne

differential pressure transducer carrier demodulator, Newport power meter, and the Ohaus
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electronic balance.

4 Experimental Results
I

A series of cleaning tests were conducted in order to study the system performance as

different operating parameters were varied. The system performance is characterized by the

rate of contaminant removal. As mentioned previously, Dow Coming 55 (DC-55) O-Ring

Lubricant is used as the surface residue for all tests conducted. All of the test results are

summarized in Table 1.

During the initial testing stages of the facility, a series of preliminary tests were

conducted using the conventional converging-diverging nozzle, which are not documented in

Table 1. The air and water temperatures were not controlled while the jet approach angle

with respect to the cleaning surface was varied during those preliminary tests, and it was

found that an approach angle of approximately 15 ° yielded the best performance. As the

angle approached 90 °, the two-phase jet was ineffective in removing residue from the

cleaning surface. Thus, for all subsequent tests which are reported in Table 1, the nozzle

approach angle was maintained at 15 ° . Several tests were also conducted in which ice

formation of the droplets from the nozzle were noted, and it was observed that the ice

impacting the surface was ineffective in removing residue. Thus for all subseqent tests, ice

formation was avoided. The fact that the abrasive impact of the ice is ineffective in

removing residue is in agreement with the observation of Hills (1995) in which a CO2

jet spray was tested.

The fact that an approach angle of 90 ° is ineffective for removing residue while 15 °
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is most effective is also an expected result, especially when considering the experience

gained from particle impact erosion. Particle impact erosion studies have shown that the

cutting action of solid particles sheafing the surface is most effective in eroding a target

surface. When the impact angle of the particles is 90 ° the particles do not shear the surface,

but rather work harden the surface. The surface will eventually fail due to brittle fatigue.

When the particles impact the target surface at 15°-20 ° the sheafing energy is high and the

maximum erosion rate is obtained. Similarly, when liquid droplets impact a residue, the

sheafing force is most effective in breaking the cohesive bonds between adjacent residue

molecules. A normal force or impact will tend to penetrate the residue and displace it to the

side and will not be effective in breaking cohesive bonds. Thus the observed result that a

15 ° approach angle results in the highest rate of residue removal is consistent with theoretical

considerations.

During the first four tests summarized in Table 1, the conventional converging-

diverging nozzle was used and its distance from the cleaning surface was varied from 1-4

inches. It was found that the best performance is observed for a distance of 2 inches,

although the result is not significantly different from the 1 inch test. The trend of rate of

contaminant removal as a function of nozzle distance is shown in Figure 8. The further the

nozzle is from the surface, the droplet concentration impacting the surface is reduced. Also

due to viscous drag, the droplet velocity impacting the surface is be reduced. It is believed

that both these factors contribute to a reduction in residue removal rate with increasing

nozzle distance. Test number 5 was also performed with a nozzle distance of 2 inches, but

since the source pressure from the cylinders was low (850 psig) and the water was heated,
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Figure 8 Residue Removal Rate as a Function of Nozzle Distance to Cleaning
Surface (Conventional Converging-Diverging Nozzle, 15 ° Approach

Angle, No Heating).
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the mixture temperature was high (24.6* C) compared with the previous tests. It is seen an

increase in the mixture temperature resulted in a significant increase in the rate of

contaminant removal.

o-

Tests 6,7,8, and 10 tested the rate of contaminant removal as a function of nozzle

distance using the annular nozzle. Figure 9 summarizes the results from these tests. The

closest distance to the cleaning surface tested was 1.0 inch, and it is observed the removal

rate sharply declines with increasing distance from the cleaning surface. Also, it is noted

that the cleaning performance of the annular nozzle is significantly better than that of the

conventional converging-diverging nozzle. Thus for all subsequent tests the annular nozzle

performance is tested. Tests 8 and 9 were conducted with the same nozzle distance from the

cleaning surface, but the mixture temperature for test 9 was about 9°C greater than that for

test 8. With only 9 ° increase in the mixture temperature, and the rate of residue removal

increased by about a factor of 6.

Since the mixture temperature has such a large influence on the residue removal rate,

a number of tests were carried out to explore the temperature influence. Tests 13-20

explored the influence of increasing the water temperature without controlling the air

temperature. These results are summarized in Figure 10. The data show that the rate of

residue removal increases slightly with increasing water temperature. However, it is

observed that the mixture temperature also increases, and the increase in the residue removal

rate is primarily due to the increase in the mixture temperature. Because the mass flow rate

of air is so much greater than water, controlling the air temperature has a much more

significant impact on the mixture temperature.
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Figure 9 Residue Removal Rate as a Function of Nozzle Distance to Cleaning
Surface (Annular Converging-Diverging Nozzle, 15 ° Approach

Angle, No Heating).
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Figure 10 Residue Removal Rate as a Function of Water Temperature

(Annular Converging-Diverging Nozzle, 15 ° Approach

Angle, 1" Nozzle Distance).
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For tests21-29, the distance of the jet nozzle from the cleaning surface as well as the

air and water temperatures were varied. The water flow rate for tests 21-29 is approximately

20 mg/min, which is about half that recorded for previous tests. Although it was not known

at the time, the water flow rate was reduced due to thermal expansion of the aluminum water

orifice. The thermal expansion resulted in a reduction in the orifice area. Also, it must be

noted that the mixing temperature for these tests is not representative of the mixture

temperature entering the nozzle. This is because the mixture temperature is measured prior

to entering the stainless steel hose to which the nozzle is connected. There is significant heat

loss from the hose to the surroundings, and during tests 21-29 the hose was not insulated.

These test results demonstrate that a nozzle distance from the cleaning surface of 0.75 inches

results in enhanced residue removal when compared to a nozzle distance of 1 inch. Poorer

performance is realized at a nozzle distance of 1.5 inches. It is also learned from these tests

that the rate of residue removal increases with an increasing mixture temperature. In tests

21-25, although the mixture temperature does not show significant variation, the outlet

temperature of the mixture from the nozzle was increasing because the stainless steel hose,

which has a large thermal capacity, continually increased in temperature the longer the

facility was operated. Thus the heat loss was reduced and the mixture temperature exiting

the nozzle increased.

During tests 30-40, a larger orifice was installed to increase the flow rate, and the

stainless steel hose was insulated. When the results of tests 21-25 are compared with those

of tests 30-40, it can be observed that the larger mass flow rate of water results in enhanced

rate of residue removal. This is consistent with theoretical considerations discussed in
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Section2.3.

Figure 11 summarizesthe rateof removalasa function of mixture temperature.

First, it is worth noting that the mixture temperaturehasthe most significant influenceon the
o-

rate of residue removal. As the mixture temperature is increased, there is a sharp increase in

the residue removal rate. As the mixture temperature is further increased, the residue

removal rate drops off. In order to understand this trend, consideration is given to Eq. (4).

The residue removal rate is inversely proportional to the interracial tension between water

and residue. The interracial tension decreases with increasing temperature and thus the

residue removal rate is increased. During these tests it was not realized that the mass flow

rate of water was falling with increasing mixture temperature due to thermal expansion of the

water metering orifice. Figure 12 shows the mass flow rate of water as a function of the

mixing chamber temperature with a 0.016 inch water metering orifice installed. Thus as the

mixing chamber temperature increased, the reduction in water flow rate offset the drop in

interfacial tension.

The residue removal trends observed in this experimental investigation are consistent

with the hypothesis that the dominant residue removal mechanism is due to emulsification of

the residue in the liquid.

These results suggest that the optimum system performance can be realized by using

the annular nozzle with an approach angle of 15 degrees with respect to the cleaning surface

at a distance from the cleaning surface of 0.75 inches with as high a mixture temperature as

possible without evaporating the water. It is further noted that the system piping and hose

line should be well insulated to maintain a higher mixture temperature. Increasing the water
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Figure 11 Residue Removal Rate as a Function of Mixture Temperature

(Annular Converging-Diverging Nozzle, 15 ° Approach

Angle, 3/4" Nozzle Distance).
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flow rate increases the rate of residue removal. Thus the orifice size in the mixing chamber

should be adjusted to obtain as high a water flow rate that is acceptable for cleaning and

verification operations.

5 Conclusions

i) A high speed jet impingement cleaning facility has been developed to study the

effectiveness of the nonvolatile residue removal. The facility includes a high pressure air

compressor which charges the k-bottles to supply high pressure air, an air heating section to

vary the temperature of the high pressure air, an air-water mixing chamber to meter the

water flow and generate small size droplets, and a converging- diverging nozzle to deliver

the supersonic air-droplet mixture flow to the cleaning surface. To reliably quantify the

cleanliness of the surface, a simple procedure for measurement and calibration is developed

to relate the amount of the residue on the surface to the relative change in the reflectivity

between a clean surface and the greased surface. This calibration procedure is economical,

simple, reliable, and robust.

A theoretical framework is developed to provide qualitative guidance for the design of

the tests and interpretation of the experimental results. The removal rate is proportional to

the mass flow rate of the square of the droplet impact velocity. It increases with the

decrease of the cohesive bond among the residue. The results documented in this report

support the theoretical considerations.
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iii) It is found that thejet approachangleof about 15degreesresultsin mosteffective

residueremoval from the surface,a result very similar to the particle impacterosionof

ductilematerials. An incidentangleof 90 degrees(normal to the surface)resultsin the most

ineffectivecleaning.

iv) The effectof temperaturewasexaminedin detail. In particular, it is demonstrated

that the formationof ice at low temperaturesactually resultsin lower removal rateof the

greasecontaminantcomparingwith the testresultsobtainedat a higher temperaturewithout

ice formation. Further increasingin themixture temperaturesignificantly enhancesthe

removalrate dueto theweakenedbondamongresiduesat a higher temperature.

v) The performanceof two nozzlegeometriesis compared.The annulargeometry

performssignificantlybetter thanthe conventionalconverging-divergingnozzleunder the

sameoperatingconditions. The reasonis that the two-phasemixturejet exiting the

conventionalnozzledivergeswhich resultsin a wider jet that reducesthejet velocity.

annularnozzle,the mixturemovestoward thecenterlineof thenozzleprior to exiting.

delaysthe eventualspreadingof thejet so that thedecayof the jet velocity is slower in

comparisonwith the conventionalnozzle.

In the

This

vi) For the annularnozzleoperatingat a nominalexit Mach number3.14,the closer the

distancebetweenthenozzleexit andthe cleaningsurface(down to 0.75 inches), the higher

the removalrate. This is consistentwith thefact the two-phasejet velocity decreasesalong
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the flow direction. For the conventionalconverging-divergingnozzle, a local maximum in

removalrate is achievedat a distanceof 2 inchesfrom the surface. This suggeststhat the

supersonicjet flow mayconvergeat thatdistancedue to the interactionof the shockwaves

with surroundings.The differencein the behaviorbetweenthe two nozzles(with and without

local maximumremoval rate for distancesdown to 0.75 inches)suggestsa significant

influenceof the nozzlegeometry(consequentlythe flow structure)on thecleaning

effectiveness.
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7 Nomenclature

a radius

A surface area

% specific heat

k thermal conductivity

rh mass flow rate

t time

T temperature

U nozzle exit velocity

V volume

u thermal diffusivity

p density

at_ liquid-residue surface tension

energy utilization parameter

Subscripts

t liquid

p particle

r residue

"t.

45


